Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Performance improvement of a micro thermomechanical generator by incorporating Galinstan® micro droplet arrays

Identifieur interne : 001719 ( Main/Repository ); précédent : 001718; suivant : 001720

Performance improvement of a micro thermomechanical generator by incorporating Galinstan® micro droplet arrays

Auteurs : RBID : Pascal:12-0414343

Descripteurs français

English descriptors

Abstract

In previous research we have demonstrated a micro thermomechanical pyroelectric generator (μTMPG) as an alternative to thermoelectric generators to harvest ambient heat energy. In such a device, a thermal mass oscillates between a hot and a cold side by virtue of the bistability of its mechanical mount, thus generating a temporal thermal gradient over a pyroelectric material in between. The operational frequency as a major factor deciding the power output of the μTMPG is in turn dependent on the thermal contact resistance (TCR) present at the mating regions of thermal mass, hot and cold sides. Hence, we have investigated the incorporation of an array of Galinstan droplets at the mating interfaces to reduce the TCR. These arrays are fabricated by selective deposition of Galinstan on a laser-micromachined silicon substrate. After incorporating such an array the operational frequency of the μTMPG increases by at least 50%.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0414343

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Performance improvement of a micro thermomechanical generator by incorporating Galinstan® micro droplet arrays</title>
<author>
<name sortKey="Ravindran, S K T" uniqKey="Ravindran S">S. K. T. Ravindran</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laboratory for Design of Microsystems, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 102</s1>
<s2>79110, Freiburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Roulet, M" uniqKey="Roulet M">M. Roulet</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Ecole Polytechnique Federale De Lausanne (EPFL)</s1>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<placeName>
<settlement type="city">Lausanne</settlement>
<region nuts="3" type="region">Canton de Vaud</region>
</placeName>
<orgName type="university">École polytechnique fédérale de Lausanne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Huesgen, T" uniqKey="Huesgen T">T. Huesgen</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laboratory for Design of Microsystems, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 102</s1>
<s2>79110, Freiburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kroener, M" uniqKey="Kroener M">M. Kroener</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laboratory for Design of Microsystems, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 102</s1>
<s2>79110, Freiburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Woias, P" uniqKey="Woias P">P. Woias</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laboratory for Design of Microsystems, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 102</s1>
<s2>79110, Freiburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0414343</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0414343 INIST</idno>
<idno type="RBID">Pascal:12-0414343</idno>
<idno type="wicri:Area/Main/Corpus">001688</idno>
<idno type="wicri:Area/Main/Repository">001719</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0960-1317</idno>
<title level="j" type="abbreviated">J. micromech. microeng. : (Print)</title>
<title level="j" type="main">Journal of micromechanics and microengineering : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bistability</term>
<term>Contact thermal resistance</term>
<term>Deposition process</term>
<term>Droplets</term>
<term>Energy recovery</term>
<term>Functionally graded materials</term>
<term>Gallium alloys</term>
<term>Gold</term>
<term>Indium alloys</term>
<term>Interfaces</term>
<term>Laser beam machining</term>
<term>Liquid alloys</term>
<term>Micromachining</term>
<term>Output power</term>
<term>Production process</term>
<term>Pyroelectricity</term>
<term>Selective growth</term>
<term>Silicon</term>
<term>Temperature gradients</term>
<term>Thermomechanical properties</term>
<term>Tin alloys</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété thermomécanique</term>
<term>Processus fabrication</term>
<term>Gouttelette</term>
<term>Pyroélectricité</term>
<term>Gradient température</term>
<term>Matériau gradient fonctionnel</term>
<term>Puissance sortie</term>
<term>Résistance thermique contact</term>
<term>Croissance sélective</term>
<term>Procédé dépôt</term>
<term>Bistabilité</term>
<term>Interface</term>
<term>Récupération énergie</term>
<term>Alliage liquide</term>
<term>Gallium alliage</term>
<term>Indium alliage</term>
<term>Etain alliage</term>
<term>Usinage laser</term>
<term>Microusinage</term>
<term>Silicium</term>
<term>Or</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Or</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In previous research we have demonstrated a micro thermomechanical pyroelectric generator (μTMPG) as an alternative to thermoelectric generators to harvest ambient heat energy. In such a device, a thermal mass oscillates between a hot and a cold side by virtue of the bistability of its mechanical mount, thus generating a temporal thermal gradient over a pyroelectric material in between. The operational frequency as a major factor deciding the power output of the μTMPG is in turn dependent on the thermal contact resistance (TCR) present at the mating regions of thermal mass, hot and cold sides. Hence, we have investigated the incorporation of an array of Galinstan droplets at the mating interfaces to reduce the TCR. These arrays are fabricated by selective deposition of Galinstan on a laser-micromachined silicon substrate. After incorporating such an array the operational frequency of the μTMPG increases by at least 50%.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0960-1317</s0>
</fA01>
<fA03 i2="1">
<s0>J. micromech. microeng. : (Print)</s0>
</fA03>
<fA05>
<s2>22</s2>
</fA05>
<fA06>
<s2>9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Performance improvement of a micro thermomechanical generator by incorporating Galinstan® micro droplet arrays</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>RAVINDRAN (S. K. T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ROULET (M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HUESGEN (T.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KROENER (M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>WOIAS (P.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratory for Design of Microsystems, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 102</s1>
<s2>79110, Freiburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Ecole Polytechnique Federale De Lausanne (EPFL)</s1>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s2>094002.1-094002.6</s2>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22483</s2>
<s5>354000509527620020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>10 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0414343</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of micromechanics and microengineering : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In previous research we have demonstrated a micro thermomechanical pyroelectric generator (μTMPG) as an alternative to thermoelectric generators to harvest ambient heat energy. In such a device, a thermal mass oscillates between a hot and a cold side by virtue of the bistability of its mechanical mount, thus generating a temporal thermal gradient over a pyroelectric material in between. The operational frequency as a major factor deciding the power output of the μTMPG is in turn dependent on the thermal contact resistance (TCR) present at the mating regions of thermal mass, hot and cold sides. Hence, we have investigated the incorporation of an array of Galinstan droplets at the mating interfaces to reduce the TCR. These arrays are fabricated by selective deposition of Galinstan on a laser-micromachined silicon substrate. After incorporating such an array the operational frequency of the μTMPG increases by at least 50%.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00G07M</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Propriété thermomécanique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Thermomechanical properties</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Propriedad termomecánica</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Processus fabrication</s0>
<s5>15</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Production process</s0>
<s5>15</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Proceso fabricación</s0>
<s5>15</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Gouttelette</s0>
<s5>18</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Droplets</s0>
<s5>18</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Pyroélectricité</s0>
<s5>19</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Pyroelectricity</s0>
<s5>19</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Gradient température</s0>
<s5>20</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Temperature gradients</s0>
<s5>20</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Matériau gradient fonctionnel</s0>
<s5>21</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Functionally graded materials</s0>
<s5>21</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Puissance sortie</s0>
<s5>22</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Output power</s0>
<s5>22</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Potencia salida</s0>
<s5>22</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Résistance thermique contact</s0>
<s5>23</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Contact thermal resistance</s0>
<s5>23</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Resistencia térmica contacto</s0>
<s5>23</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Croissance sélective</s0>
<s5>24</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Selective growth</s0>
<s5>24</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Procédé dépôt</s0>
<s5>25</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Deposition process</s0>
<s5>25</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Procedimiento revestimiento</s0>
<s5>25</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Bistabilité</s0>
<s5>27</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Bistability</s0>
<s5>27</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Interface</s0>
<s5>28</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Interfaces</s0>
<s5>28</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Récupération énergie</s0>
<s5>41</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Energy recovery</s0>
<s5>41</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Alliage liquide</s0>
<s5>43</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Liquid alloys</s0>
<s5>43</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Gallium alliage</s0>
<s5>44</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Gallium alloys</s0>
<s5>44</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Indium alliage</s0>
<s5>45</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Indium alloys</s0>
<s5>45</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Etain alliage</s0>
<s5>46</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Tin alloys</s0>
<s5>46</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Usinage laser</s0>
<s5>47</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Laser beam machining</s0>
<s5>47</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Microusinage</s0>
<s5>48</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Micromachining</s0>
<s5>48</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>49</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>49</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Or</s0>
<s2>NC</s2>
<s5>50</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Gold</s0>
<s2>NC</s2>
<s5>50</s5>
</fC03>
<fN21>
<s1>324</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Workshop of Micro and Nanotechnology for Power Generation and Energy Conversion Applications (POWERMEMS 2011)</s1>
<s3>Seoul KOR</s3>
<s4>2011-11-15</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001719 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001719 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0414343
   |texte=   Performance improvement of a micro thermomechanical generator by incorporating Galinstan® micro droplet arrays
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024